Wolves Are Good Boys Too

brown wolf standing on green grass
Figure 1: The grey wolf (Canis Lupus)

We’ve all been there, trying to get some out of reach object only to dejectedly ask for the assistance of another. Turns out, this behavior has been with us for most of our lives. It is known that children as young as 12 months will start to point at certain objects that they desire but are, for obvious reasons, unable to obtain (Figure 2). This behaviour is known as imperative pointing and, as it turns out, you don’t even need to point to be able to do it. In fact, gaze alteration, the process of looking between the desired object and a specific individual, is seen as an analog of this in our four-legged friends, the canines. This behavior has been widely examined in domesticated dogs, who humans have a long history of cohabitation with. Indeed, many of us can probably offer anecdotal evidence of this in our own dogs, be it looking at treats on a shelf, or their favourite toys on kitchen tabletops. However, surprisingly, it has never been studied in wolves, the wild relatives of our beloved pooches. In 2016, Heberlein et al. set to change this, and their findings have some important implications, not least concerning our understanding of the very domestication of dogs itself.

Figure 2: A cartoon of imperative pointing in infants

The experimental premise was relatively simple. A group of grey wolves (subspecies: timber wolf) and a group of dogs (breed not given), were both obtained from animal shelters in Europe and were raised from puppyhood with daily human interaction. When the canines were around 2 years old, the experiment began with a pre-feeding and training phase. This involved an experimental room with 3 boxes (Figure 3), each too high for the canines to reach by jumping, the poor guys. In this phase, food was first shown to the animals, one animal at a time, and then clearly placed in each of the boxes. If the animal looked at the box and then at the human, the human would automatically get the food for them. The wolves and dogs were then introduced to 2 new humans, a mean competitor who would steal the food, and a helpful cooperator, who would share any food the animals identified. This whole process would serve to inform the canines that the humans could provide them with out of reach food, but that only the cooperator would actually give them any of it. Why go through all this trouble you may ask? Well, turns out there were some very clever scientists involved in the experiment. Those involved wanted to avoid the possibility that gaze alteration for food could simply be the result of a food human association, i.e., if I stare at a box and then a human, then the human must give me food. If gaze alteration reflects some true communicative intention on the part of the animals, then one would expect that they should ask for help mainly from the cooperative human, I know I definitely prefer working with cooperative humans. Once trained, the test was ready to begin.

The actual experiment involved a tasty sausage being presented to a lone wolf/dog and then being hidden in one of 3 boxes located in the room, the same room used in pre-training. Then, either the cooperative human or the competitive human, the same humans the animals had been trained with, entered the room. They would passively observe the animal for 1 minute after which they would go to the box they believed the animal was looking at. If correct then the sausage would wither be given to the animal, if the cooperator was present, or eaten by the human, if the competitor was present. The process was repeated a total of 4 times, twice with each type of human.

Figure 3: The experimental setup. Stars represent the food boxes, the circle is where the human was positioned, and D is the rooms door. 

The results were incredibly interesting. In most cases, the canines, both wolves and dogs, showed the correct food location to the cooperator but not the competitor (P = 0.006) (Figure 4). Importantly, there was no difference between this behaviour between the two species (P = 0.24). As an aside, P values are statistical values that tell you if there is a significant difference between two things. All you need to know is 1) Any P value less than 0.05 means that the event is unlikely to have happened by chance and 2) That scientists are very fond of including them in their papers. In any case, what’s even more interesting is what these results can tell us about their evolutionary histories. While both directed the cooperative human to the food box, wolves spent more time looking at the food itself when compared to the dogs (P = 0.03). This may reflect a higher food motivation present in wolves. Intuitively this makes sense, as, while some of us would surely like them to be, wolves are not pets and so need to hunt for food themselves. In addition, the ability of dogs to referentially communicate with humans was thought to be a result of their domestication and close association with us ever since. The results of this experiment would, however, suggest that this ability was at least present in the common ancestor of the wolves and domestic dogs. Therefore, rather than this communication being a product of domestication, it is more likely that the skill of referential communication had evolved in canines to promote the social coordination needed for group living, i.e., living in their packs. In other words, the common ancestor of today’s canines may have also been a good boy.

Figure 4: A graph comparing the percentage of showing behaviour, i.e., gaze alteration, in wolves and dogs towards competitive and cooperative humans.  

In summary, dogs, are not alone in their ability to ability to referentially communicate with us. This ability is shared with the grey wolf and the choice to work with a cooperative human over a competitive one provides evidence that there is some conscious thought in this decision-making process (both in dogs and wolves). While this raises important questions about the evolutionary histories of these animals, more intriguing questions remain. Namely, what other well-known traits of dogs are also present, but undiscovered, in wolves. Personally, I am very much excited to find out.  

Figure 5: Grey wolf puppies playing next to their mother.

For more information on this topic, you can read the paper discussed here (free of charge)

Blog written by Niall Moore, a final year undergraduate student, as part of an assignment writing blogs about an animal behaviour paper!

From a Frozen Zoo Then Back to Life: A Clone’s Story

The media love to brand cloning as an apocalyptic threat that involves mad scientists, evil doppelgängers, and mutated monsters like Frankenstein. Thanks to such misconceptions, cloning discussions highly focus on the idea of human clones and what this means for our individual identity. However, much like the Sun does not revolve around the Earth, life is more than mankind. This human self-entitlement draws away from the fact that cloning can be a tool used to right our wrongs, as cloning has the potential to save species that we have endangered or even resurrect species that we have driven to extinction. But before Jurassic Park and Ice Age fans get too excited, I’m here to convince you that we should focus our cloning resources on reverting species decline rather than de-extinction. Read on with an open mind and look past the assumptions that the media have distilled in how we think and understand the science of cloning.

Credit cover picture: USFWS Mountain Prairie is licensed under CC BY 2.0

To demonstrate how cloning can successfully save a dying species, I am going to take you on a journey as we explore the life, death and rebirth of a clone named Elizabeth Ann. Elizabeth Ann is a black-footed ferret whose species is native to the United States. In the 1970s, this species was thought to be extinct after farmers and ranchers destroyed the main food source of black-footed ferrets, the prairie dogs.

However, a ranch dog named Shep surprised the world when he uncovered a remaining population in 1981. These surviving black-footed ferrets were monitored intensely and the population seemed to be thriving, up until they were nearly wiped out by canine distemper and sylvatic plague. The very last 18 black-footed ferrets were rounded up and taken by the Fish and Wildlife Service before it was too late.
Of the remaining 18 black-footed ferrets, only 7 were successful in breeding and passing their genes onto offspring. As a result, all newborns arose from the same 7 founders, meaning all black-footed ferrets alive today are related. This incestuous existence creates a population with little genetic diversity which can wreak all sorts of havoc on the success and maintenance of a population. You see, differences and variations in genes are what enable a species to fight off diseases and better adapt to their surroundings. Without this diversity, a species is less likely to survive on this ever-changing Earth.

The black-footed ferret cloning process began when forward-thinking conservationists at the Wyoming Department of Game and Fish suggested that the cells of a female black-footed ferret, named Willa, be sent to the Frozen Zoo within the San Diego Zoo Wildlife Alliance (SDZWA) when she died in 1988, as Willa had a particularly diverse genome. These cells became one of the 1,100 cryopreserved (frozen) cells of rare, endangered, and even long-dead species who are silently waiting for technology to enable their return. 30 years later, Willa’s frozen cells were used to make Elizabeth Ann, along with the collaborative help from the U.S. Fish and Wildlife Service, ViaGen Pets & Equine, Revive & Restore and the SDZWA.

The cloning process involved taking eggs from sedated domestic ferrets (a related species) and replacing the nucleus and genetic material of the eggs with the contents of Willa’s cells (picturing a yolk transplant between a chicken and a duck egg helps me make sense of it). The resulting embryos were implanted into a surrogate domestic ferret and, lo and behold one embryo took and a black-footed ferret foetus was conceived.
On the 10th of December 2020, Elizabeth Ann was born via C-section with tests on her 65th day revealing that she is, in fact, of the black-footed ferret species and a clone of the pre-existing Willa. The arrival of Elizabeth Ann brings new hope for the species as a broadening of the gene pool may help black-footed ferrets reproduce more easily and become more resilient to disease and environmental stressors. Therefore, cloning can aid in overcoming the genetic limitations that are disrupting the recovery of the endangered black-footed ferrets. If Elizabeth Ann successfully breeds and provides greater genetic diversity, this will legitimise cloning as a reproductive technology for the conservation management of black-footed ferrets and other endangered species.

Although cloning can be a successful way of saving living species from dying out, cloning specialists at Revive & Restore continue to work towards resurrecting extinct species such as the passenger pigeon and the woolly mammoth. But take note, bringing an extinct species back to life is very expensive, much more complicated, and highly controversial. There’s no knowing if an extinct species could even survive in the climate we have created today. So, let’s stick to what we know can work and clone to save our existing species first.

What do you think?

Keep up-to-date with Elizabeth Ann’s journey via the black-footed ferret conservation project Facebook page: https://www.facebook.com/FerretCenter

References:
1. Maio, G. (2006). Cloning in the media and popular culture: An analysis of German documentaries reveals beliefs and prejudices that are common elsewhere. EMBO reports, 7: 241-245
2. Ryder, O.A. and Benirschke, K. (1997). The potential use of “cloning” in the conservation effort. Zoo Biology: Published in affiliation with the American Zoo and Aquarium Association, 16: 295-300.


Based on the ideas discussed in: Shapiro, B. (2017). Pathways to de-extinction: how close can we get to resurrection of an extinct species?. Functional Ecology, 31: 996-100.