The buzz on neonicotinoids

Picture1
On the 31st January, stimulated by a European Food Safety Authority report, the EU proposed banning three neonicotinoid insecticides which have been implicated in causing honeybee decline. These insecticides are widely-used, systemic (i.e. soluble enough in water to move around the plant’s vascular system to nearly all plant tissues), and, like nicotine, affect the insects’ central nervous system. They are highly effective at reducing insect pests that feed on crops and reduce yields and value, and many farmers are concerned about the effect the proposed ban will have on crop production. But these insecticides can also end up in the nectar and pollen of crops (as well as in the soil and in non-crop plants), and thus can have unintended side-effects on beneficial, nectar-feeding insects, who act as pollinators. Especially bees.

Bee decline has become a hot topic with scientists, the media, the public and even some politicians, but until recently the threat of neonicotinoids to bees has not been seriously implicated in their decline. Concern about pollinator decline is a result of the important role that pollinators play in food production: 75% of crop species depend on animal pollinators, which translates into 35% of global production; and the total annual economic value of pollination has been estimated at €153 billion globally. In addition, pollinators are fundamental to most terrestrial ecosystems, and indirectly affect the availability of food for other organisms (e.g. fruits and berries for frugivorous birds), as well as the structure and functioning of ecosystems.

So here’s the paradox: flower-visiting insects including bees are really important for agricultural production. But so is the use of neonicotinoid pesticides. Which is more important and is the ban justified on scientific grounds?

In the last year, the evidence that neonicotinoids have negative impacts on bees has been mounting. Bees and other flower-visiting insects are exposed to neonicotinoid pesticides in multiple ways: during planting of seeds which have been coated with pesticides as a pre-planting treatment, by collecting pollen and nectar from the crop, and by foraging on non-crop plants which take the pesticide up through the soil. Traditionally, toxicological tests of agrochemicals are carried out on the managed honeybee Apis mellifera, and pesticides are rated according to their lethal effects (by calculating the LD50 – the dose required to kill half the organisms tested after a specified duration). But the biology of Apis and all the other bee species (20,000 of them worldwide) is different. Can we generalise about effects on Apis, to effects on other bee species, and other pollinating insects including hoverflies and butterflies? And what about sub-lethal effects, i.e. those that don’t kill the insects, but affect their physiolology, behaviour and fitness?

Neonicotinoids are highly toxic to insects – that’s the whole point of them. Bees are insects. So it shouldn’t be too much of a shock that they kill bees. Last year it was shown that neonicotinoids can also have sub-lethal effects in honeybees, by decreasing foraging success and navigation by individuals back to the hive. At the same time, the neonicotinoid pesticide, imidacloprid, can reduce bumblebee colony growth and fitness by affecting their feeding behaviour. Some dissenters have cast doubt on the field-relevance of laboratory tests, claiming that field-realistic dosages have not been used, but this is not the case – the concentration of imidacloprid in oilseed rape flowers for example has been found to be 4.4-7.6 mg/kg in pollen and 0.6-0.8 mg/kg in nectar, which was within the range tested on bumblebees. This is pretty convincing evidence that neonicotinoids can cause very adverse effects on populations of these social bees.

Although neonicotinoids are not the only cause of widespread bee decline, they are more than likely contributing to it. Some of the agrochemical companies are claiming that bee decline has nothing to do with their chemicals and instead blame decline on Varroa destructor, the parasitic mite which infects honeybee colonies. Whilst Varroa probably plays its part in honeybee decline, the most probable cause of decline in other bee species is multiple pressures, including habitat loss and loss of forage plants, AND the use of neonicotinoid pesticides.

So should these insecticides be banned? YES, if we want to address pollinator decline. They should not be used for insect-pollinated crops, and wind-pollinated crops that insects forage on (including maize). But what’s the alternative for the farmer? How can crop production be maintained in the absence of these chemicals? Use something worse? If we’ve learned anything since Rachel Carson’s “Silent Spring” published 50 years ago last year, it’s that an alternative will be found, and we can’t be sure that this won’t be worse for the bees and other pollinating insects.

Author

Jane Stout: stoutj@tcd.ie

Photo credit

wikimedia commons

“Toxic” nectar and pollen in an invasive plant species

For the longest time floral nectar was considered to be made of two components: simple sugars (such as sucrose, fructose and/or glucose) and water.  Research carried out in the past two decades however has repeatedly shown this paradigm to be incorrect.  As analytical techniques such as high resolution GC-MS and HPLC have become commonplace, the composition of floral nectar of hundreds of plant species has been investigated in detail. The findings of this research have revealed that floral nectar has a lot of components other than sugars; amino acids, lipids, proteins, and vitamins have been detected at low concentrations.  One surprising class of constituents of floral nectar has been found in plant species belonging to over 21 different families; plant secondary metabolites.  It is strange to see these secondary metabolites- compounds such as alkaloids, terpenes, and phenolics- in floral nectar because we normally associate them with defence of plants against herbivores.  They are often repellent to insect visitors and can potentially cause floral nectar to be unappealing to flower-visitors.  The paradoxical phenomenon has many potential adaptive and non-adaptive hypotheses (see Adler 2000 for an excellent review) and it’s a subject about which there has been some really exciting literature published lately.

At NERD club one of our discussions focused around this topic of “toxic nectar”.  I study the toxins found in the floral nectar of Rhododendron ponticum, a group of compounds called grayanotoxins.  R. ponticum is invasive in Ireland and I am particularly interested in the effects of these toxins on native Irish insects that may use this mass flowering resource in early spring.  Our discussion ranged from thinking about work done in other systems in which plant toxins might play an important role to considering trophic accumulation and mechanisms by which organisms deal with ingestion of toxins. I enjoyed the meeting immensely and it made me reflect upon how useful it is to discuss your research with as many people as possible.  The varying opinions and perspectives that colleagues form different departments can bring to the discussion are both insightful and inspirational.  We get so involved in our own research it is refreshing to hear these different perspectives, so thanks to everyone who could come along!

Author

Erin Jo Tiedeken: tiedekee[at]tcd.ie

Photo credit

Erin Jo Tiedeken

 

“See you later, pollinator”

Scientific conferences can be a great way of meeting people, getting and sharing new ideas, and networking with people from, often, all over the world. And they can be good fun too! On October 25th-28th several people in the School travelled to Norway for the annual conference held by the Scandinavian Association for Pollination Ecologists (SCAPE). This meeting is held for ecologists working with pollination, plant reproductive biology and other related fields and it attracts a small but expert crowd from Scandinavia, Europe, and sometimes even further afield (this year there were attendees from Brazil and Israel!). Continue reading ““See you later, pollinator””

The plight of the bumble bee; diapause, immunity and parasitic attack

Sphaerularia bombi with an everted uterus.

Bee populations are in severe decline, an alarming and worrying trend when you consider their vital importance as commercial and ecological pollinators. Research and media attention often focuses on afflictions of honeybees such as the Varroa mite and colony collapse disorder. However, parasites are also major contributors to the plight of the bumble bee.

Bumble bee queens spend 6-9 months in diapause, a hibernation-like state which allows them to survive harsh winter weather. My research demonstrated that queens have reduced immune function during this time, leaving them vulnerable to infections and parasitic attack.

Sphaerularia bombi is a common yet poorly studied nematode which is found primarily in the Northern hemisphere, infecting up to 50% of queen bumble bees in some areas. Adult female Sphaerularia present in the soil infect diapausing queens. My project showed that, with their immunological guards down, the queens cannot mount an effective response to invading parasites.

Sphaerularia exerts significant influence on its host after the queens emerge from diapause. The nematodes evert their uterus to a structure 300 times the volume of the rest of their body (see picture above). This enormous uterus releases numerous eggs into the host and also extracts nutrients from the bees.

Sphaerularia castrate the queens so they don’t form new colonies. The parasite also changes queens’ behaviour so they go to sites suitable for diapause even though it’s the wrong time of year. Having released larval stage nematodes into the soil, parasitised queens die while the nematodes are then poised to infect new queens entering diapause.

Sphaerularia clearly has a significant impact on a host species with high ecological and commercial value yet it remains very poorly studied.  In collaboration with research currently being performed by PhD student Joe Colgan (Trinity College Dublin: Supervisor Dr. Mark Brown) and Dr. Jim Carolan (National University of Ireland, Maynooth), my project filled some of the gaps in our understanding of the molecular interactions between host and parasite. One particularly interesting finding was that S.bombi infection seems to change the protein expression in bees, indicating a complex interaction between host and parasite at the molecular level in parallel to the dramatic physiological and behavioural changes in the bees.

Continuation of this research on a fascinating host-parasite system will bring us closer to understanding and hopefully eventually combatting the plight of the bumble bee.

References

1. Society of Biology News Page http://www.societyofbiology.org/newsandevents/news/view/469

Author

Sive Finlay: sfinlay[at]tcd.ie

Sive is a PhD student from Trinity College Dublin, who recently won Best Biology student at the 2012 SET awards for her undergraduate project detailed here

Photo credit

Mike Kelly