How protected are protected areas? An exploration of human activities inside European protected areas

By Francesco Martini

We are living in a biodiversity crisis, with many species shrinking in numbers and at risk of going extinct. To put a stop to, or at least slow down this seemingly inevitable fall into the abyss for many of the world’s species, one action that is considered effective is establishing protected areas. 

A protected area is a clearly defined geographical space, recognised, dedicated and managed, through legal or other effective means, to achieve the long term conservation of nature with associated ecosystem services and cultural values.” IUCN Definition, 2008 

When we imagine a protected area, we typically picture a pristine natural environment with gorgeous landscapes, thriving diversity of wildlife, and no human beings. The reality, however, is strikingly different, especially in Europe where very few locations have never been used by humans. In fact, most protected areas are under pressure from human activities.

The pressure comes in different forms: from farming to roads, from urbanization to hunting, from mining to logging etc.. We may expect that some of those threats are more harmful than others. We may also expect that some of those threats are more “central” than others. In other words, that some threats may be sources of other types of pressures. A classic example is roads, which favour the spread of invasive species and increase hunting. New roads make it easier for hunters to access more land to hunt on. If we want to reduce hunting, we could well reduce access to areas that host endangered species.

In the European Union (EU), protected areas are managed through an integrated network called Nature 2000, which includes over 27,000 land and marine protected areas and covers over 1.1 million square kilometres, an area almost four times the size of Italy. The EU collects an impressive amount of information about its protected areas. For example, data on protected species, habitats, what management actions are carried out, and importantly human activities. Remarkably, all this data is made openly available (it can be downloaded here)!

We used this data and we tried to identify relationships between human threats, hoping to provide guidance for a better management of these sites.

Map of the terrestrial Natura 2000 sites used in the study, shown in dark green colour.
Map of the terrestrial Natura 2000 sites used in the study, shown in dark green colour.

By analysing the data from the EU, we found that many of the human threats recorded within the Natura 2000 network are related with each other. For example, as introduced earlier, we observed that the presence of ’roads, paths and railroads’ is strongly related with ’hunting and collection of wild animals’. We also observed that ’Urbanised areas, human habitation’ is related threats such as ’Fire and fire suppression’, ’Introduced genetic material, GMO’, and ’Taking/removal of terrestrial plants’, among others. In these examples, roads and urban areas are likely acting as sources of the other types of threats. Generally, we found that threats related to agriculture and urbanization are more frequently related with other threats. In practical terms, it means that if we are going to eliminate, or at least reduce the presence, of those types of human activities we will be more likely to also reduce other threats that are associated to them. We can kill two birds with one stone, but now the birds are nasty human activities that harm ecosystems and biodiversity. Minimizing threats that are strongly related with others should be prioritized.

The full article “Examining the co-occurrences of human threats within terrestrial protected areas“, published in Ambio, can be accessed here.

Wolves Are Good Boys Too

brown wolf standing on green grass
Figure 1: The grey wolf (Canis Lupus)

We’ve all been there, trying to get some out of reach object only to dejectedly ask for the assistance of another. Turns out, this behavior has been with us for most of our lives. It is known that children as young as 12 months will start to point at certain objects that they desire but are, for obvious reasons, unable to obtain (Figure 2). This behaviour is known as imperative pointing and, as it turns out, you don’t even need to point to be able to do it. In fact, gaze alteration, the process of looking between the desired object and a specific individual, is seen as an analog of this in our four-legged friends, the canines. This behavior has been widely examined in domesticated dogs, who humans have a long history of cohabitation with. Indeed, many of us can probably offer anecdotal evidence of this in our own dogs, be it looking at treats on a shelf, or their favourite toys on kitchen tabletops. However, surprisingly, it has never been studied in wolves, the wild relatives of our beloved pooches. In 2016, Heberlein et al. set to change this, and their findings have some important implications, not least concerning our understanding of the very domestication of dogs itself.

Figure 2: A cartoon of imperative pointing in infants

The experimental premise was relatively simple. A group of grey wolves (subspecies: timber wolf) and a group of dogs (breed not given), were both obtained from animal shelters in Europe and were raised from puppyhood with daily human interaction. When the canines were around 2 years old, the experiment began with a pre-feeding and training phase. This involved an experimental room with 3 boxes (Figure 3), each too high for the canines to reach by jumping, the poor guys. In this phase, food was first shown to the animals, one animal at a time, and then clearly placed in each of the boxes. If the animal looked at the box and then at the human, the human would automatically get the food for them. The wolves and dogs were then introduced to 2 new humans, a mean competitor who would steal the food, and a helpful cooperator, who would share any food the animals identified. This whole process would serve to inform the canines that the humans could provide them with out of reach food, but that only the cooperator would actually give them any of it. Why go through all this trouble you may ask? Well, turns out there were some very clever scientists involved in the experiment. Those involved wanted to avoid the possibility that gaze alteration for food could simply be the result of a food human association, i.e., if I stare at a box and then a human, then the human must give me food. If gaze alteration reflects some true communicative intention on the part of the animals, then one would expect that they should ask for help mainly from the cooperative human, I know I definitely prefer working with cooperative humans. Once trained, the test was ready to begin.

The actual experiment involved a tasty sausage being presented to a lone wolf/dog and then being hidden in one of 3 boxes located in the room, the same room used in pre-training. Then, either the cooperative human or the competitive human, the same humans the animals had been trained with, entered the room. They would passively observe the animal for 1 minute after which they would go to the box they believed the animal was looking at. If correct then the sausage would wither be given to the animal, if the cooperator was present, or eaten by the human, if the competitor was present. The process was repeated a total of 4 times, twice with each type of human.

Figure 3: The experimental setup. Stars represent the food boxes, the circle is where the human was positioned, and D is the rooms door. 

The results were incredibly interesting. In most cases, the canines, both wolves and dogs, showed the correct food location to the cooperator but not the competitor (P = 0.006) (Figure 4). Importantly, there was no difference between this behaviour between the two species (P = 0.24). As an aside, P values are statistical values that tell you if there is a significant difference between two things. All you need to know is 1) Any P value less than 0.05 means that the event is unlikely to have happened by chance and 2) That scientists are very fond of including them in their papers. In any case, what’s even more interesting is what these results can tell us about their evolutionary histories. While both directed the cooperative human to the food box, wolves spent more time looking at the food itself when compared to the dogs (P = 0.03). This may reflect a higher food motivation present in wolves. Intuitively this makes sense, as, while some of us would surely like them to be, wolves are not pets and so need to hunt for food themselves. In addition, the ability of dogs to referentially communicate with humans was thought to be a result of their domestication and close association with us ever since. The results of this experiment would, however, suggest that this ability was at least present in the common ancestor of the wolves and domestic dogs. Therefore, rather than this communication being a product of domestication, it is more likely that the skill of referential communication had evolved in canines to promote the social coordination needed for group living, i.e., living in their packs. In other words, the common ancestor of today’s canines may have also been a good boy.

Figure 4: A graph comparing the percentage of showing behaviour, i.e., gaze alteration, in wolves and dogs towards competitive and cooperative humans.  

In summary, dogs, are not alone in their ability to ability to referentially communicate with us. This ability is shared with the grey wolf and the choice to work with a cooperative human over a competitive one provides evidence that there is some conscious thought in this decision-making process (both in dogs and wolves). While this raises important questions about the evolutionary histories of these animals, more intriguing questions remain. Namely, what other well-known traits of dogs are also present, but undiscovered, in wolves. Personally, I am very much excited to find out.  

Figure 5: Grey wolf puppies playing next to their mother.

For more information on this topic, you can read the paper discussed here (free of charge)

Blog written by Niall Moore, a final year undergraduate student, as part of an assignment writing blogs about an animal behaviour paper!

Hidden legacies: what do colonialism and natural sciences have to do with each other?

by Midori Yajima

How unlikely it is to think that many people who decided to dedicate themselves to a natural sciences-related field wondered at least once about the life of an eighteenth-century naturalist?

Picture Alexander von Humboldt, Charles Darwin or Joseph Banks expeditions, or René Malaise and Gustav Eisen‘s impressive efforts in gathering human specimens and artefacts. How about Roderick Murchinson and his geological surveys around the world, or Hans Sloane, whose collections contributed to the foundation of London’s beloved British Museum? The imaginaries of explorers crossing oceans towards yet unknown territories, observing and sampling specimens never seen before, naming and using them to interpret the world, are striking, to say the least.

Nevertheless, other narratives are growing beside these settled imaginaries. It is increasingly recognised how those exact figures were far from the idea we have of them: solitary geniuses and intrepid explorers, nothing related to the politics and economies of their time. Instead, their journeys would rest on the routes of British imperialism, making use of the slave trade in the case of Sloane,1  or be sponsored by intelligence operations on foreign valuable minerals and local policies such as the case of Murchinson2. Even an important institution such as the Royal Botanic Garden in Kew now acknowledges how the boost that botanical research saw at the time was supported by interests in new profitable plants3. Likewise, it is recognised how the global network of botanic gardens emerged not only to create pleasant green spaces but also to have experimental facilities dedicated to researching those exotic new plants for valuable products. As a matter of fact, the search and cultivation of plants such as the rubber tree, a source of such a profitable material, or the Cinchona tree, from which the compound quinine was isolated and used against malaria by the occupying forces in the tropics, have been central to the expansion of the British empire4. The very same collection of animal, plant and human samples can be considered to be driven by similar dynamics. What was discovered in the colonised territories was taken, shipped to the collectors’ homelands, and then housed in centres that, in turn, expanded to accommodate the increasing flow of materials, being a source of knowledge for the benefit of their host institutions. This colonial dimension of the sciences that study nature remained unaddressed in the mainstream imaginaries, although some already glimpsed it. Like Sir Ronald Ross, a doctor engaged in the fight against malaria in the Sierra Leone colonies, who in 1899 publicly expressed how the success of imperialism in the following century would largely depend on success with the microscope 5.

Much has been written about “how modern sciences were built on a system that exploited millions of people, at the same time justifying and supporting it to an extent that greatly influenced how Western people view other ethnic groups and countries”6. At the same time, others point out that “one should not fall into the prospective error of asking nineteenth-century men to reason with post-colonial categories developed after World War II” 7. Likewise, those who work or are interested in these fields today might easily feel far from this legacy, either because of the time that has passed since that era or because of the desk-based nature of their research. Why think about it then? Wasn’t this a blog just about ecology and evolution?

Yet, systems linked to colonial trauma continue to shape the experience of many ecologists, naturalists, biologists, and even anthropologists, today. At the same time, many narratives are still influenced by worldviews that see the advances in the natural or biological realm as carriers of better health, civilization or culture. The consequences of these processes are tangible. A perspective article in Nature Ecology and Evolution8 speaks of colonialism in the mind first, referring to the way a Western scholar might relate to knowledge. From the simple use of language, as when talking about the Neotropical region (new to whom?), or the overwriting of Latin names, sometimes derived from the names of their European discoverers, to the traditional names by which some species are recognized, often more informative about behaviours or characteristics of that species. It could be through devaluating local knowledge, oral traditions, and artefacts that made it possible to navigate an environment in a surprisingly (for us) detailed way, relegating them to folklore or anecdotes, going so far as to claim scientific discoveries, for example, medical properties of plants, already known and shared by local communities for a long time. Fuelling the idea that any active ingredient or species is only really discovered when it enters Western scientific literature, even if they come from a non-systematic and oral knowledge that a population held for centuries.

Figure from Trisos et al. (2021). Map showing the minimum estimate for each country of the number of bird species for which the Latin binomial name is based on a European person.

Other than the mindset, inequalities are also visible on a very practical level: the scientific subordination of formerly colonised countries to researchers of the so-called Old World, better known as parachute or helicopter science. The role of local scientists has often been reduced as labourers employed in data analysis and collection for Western scientists. Adding to this, there are the issues with accessing that same knowledge produced in the ‘Global North’, either because samples or data are stored in museums or servers far away from the places they were collected, the absence of high-speed internet, the lack of the right networks, visa issues for accessing conferences9, or simply the high costs of publishing or even accessing scientific literature. Other ways in which parachuting occurs are through drawing on the traditional knowledge of these countries, when this is not belittled, cataloguing and publishing information without mentioning the contribution of local curators and experts.

Figure from Asase et al. (2022). Summary of the relationship between the number of authorships (i.e., representation as author or coauthor) on 9935 papers on “ecology” or “conservation” in Web of Science, for 2015–2020 versus per-capita gross domestic product (GDP).

Another important discussion is about climate change mitigation and rewilding projects when benefits that will be experienced globally demand costs to be felt locally, especially when adequate resources and support are not provided, or when measures impose worldviews external to local values and needs. The same article brings the example of a no-fishing zone established in French Polynesia which was detrimental to local fishermen’s needs, thus ending in simply not being respected and ultimately not helping the conservation efforts on the target fish stock. Top-down management of this kind proved itself to be not only erosive for people’s self-determination but also undermines the very objective of the project.

Many of the difficulties in the field of land management and nature conservation stem right from the relationship with local communities: other risks beyond not considering them (as in the case above), is romanticising them, possibly falling into the Western myth of the good savage, or assuming that indigenous people are willing to do what we ask. Rather, it would be important to recognize that like any human community, the local people we encounter during our work as scientists might have legitimate political, cultural and economic aspirations that could differ from our expectations.

Decolonizing the natural sciences is not a trivial matter. It certainly does not mean throwing away all that has been learned so far and starting afresh, making only use of ancient artefacts and indigenous tales. For many, it is a matter of reflecting critically on their profession, on the political context that allowed the development of each one’s work, on the power structures to which science might have contributed, taking dignity away from some bodies more than others. To “take a stand and recognize ourselves as part of the system we wish to describe, rather than as neutral actors, becoming aware of how backgrounds and training influence the questions that are asked, trying to understand how the data is interpreted and how our work might intersect with the power of companies or extractive interests over a place” 8.

Decolonization would not only be a matter of awareness but also make sure that research methods and implications are not in contrast with local values and management. This would certainly restrict researchers’ access or capacity for action, but it would be an important trade-off for all those who repeatedly had to give up their territories or lifestyles.

Discussions like this are indeed taking root. It happens when researchers use local languages alongside the traditional binomial taxonomic system, or initiatives are taken from established institutions, such as the case of the American Ornithological Society and its statement for changing harmful and exclusionary English bird names thoughtfully and proactively for species10. Or like the Biodiversity Heritage Library, now working to make their materials available in languages other than English11, the Pitt Rivers Museum12 and London’s Natural History Museum13, with their projects aimed at sharing the stories of colonialism behind their collections. More and more resources are becoming available for establishing healthy stewardships with indigenous communities14 or addressing parachute science15,16,17, or simply engaging with diverse experiences from diverse scholars18, 19.

On a side note (but not really), it is also worth mentioning the call for an intersectional approach to these challenges. Noticing how an individual’s capacity to contribute to public and scholarly discourse does not only rely on race/ ethnicity, but similar power dynamics might be in place based on gender, nationality, indigeneity, wealth, spirituality, sexuality, parenthood/dependencies and other identities. “An intersectional approach to practising ecology recognizes the multiple barriers and opportunities facing those working together”8.

These discourses might seem marginal to someone working now on their own seemingly unrelated passion project. Nevertheless, reflecting on how plants, animals, environments, and people intersected and influenced each other in different directions is indeed relevant.

Among all, it is the field of ecology and evolution that explores the relationships between living beings and the environment in which they live. Acknowledging diversity, not only in biological terms but also within systems of knowledge, solutions and stories of the people who are part of it – including their gender, ethnicity and nationality – is certainly a way to widen one’s lens on the world.

Figure from Trisos et al. 2021. Actions that support reformulating research questions and processes for a decolonizing ecology. Credit: Keren Cooper (illustrations).

I am a visiting researcher at Trinity College Botanic Garden, working on the establishment of its long-term environmental monitoring program and interested in the human dimension of ecological systems dynamics. I wrote this post from the perspective of a western, female, early career researcher, and by no means do I wish to take ownership of the views of those who experience inequity and discrimination on a daily basis, nor do I believe this offers a complete or global understanding of such a complex problem. Rather, I hope to contribute to mainstreaming such an ongoing struggle, thanks also to the encouragement coming from discussing and comparing with peers.

This post is based on an original article I wrote for the Italian organisation Lupo Trek (https://www.lupotrek.it),  inspired by reading both academic articles (linked in the text) and outreach pieces such as Deb Roy, R (2018). Decolonise science – time to end another imperial era on The Conversation (https://theconversation.com/decolonise-science-time-to-end-another-imperial-era-89189),  Chatterjee, S. (2021). The Long Shadow Of Colonial Science in Noema Magazine (https://www.noemamag.com/the-long-shadow-of-colonial-science/), Boscolo, M. (2018). Decolonizzare la scienza. Il Tascabile (https://www.iltascabile.com/scienze/scienza-colonialismo/), and  Wong, J. (Host), (2021, Mar 10). Dirt on our hands: Overcoming botany’s hidden legacy of inequality (No. 7) in the podcast Unearthed – Mysteries from an Unseen World of the Royal Botanic Garden Kew (https://omny.fm/shows/unearthed-mysteries-from-an-unseen-world/dirt-on-our-hands-overcoming-botany-s-hidden-legac).

References

  1. Olusoga, D. (2020). It is not Hans Sloane who has been erased from history, but his slaves. The Guardian. https://www.theguardian.com/commentisfree/2020/aug/30/it-is-not-hans-sloane-who-has-been-erased-from-history-but-his-slaves
  2. Stafford, R. A. (2002). Scientist of empire. Sir Roderick Murchison scientific exploration and victorian imperialism, Cambridge University Press. ISBN: 9780521528672. https://www.cambridge.org/ie/academic/subjects/history/history-science-and-technology/scientist-empire-sir-roderick-murchison-scientific-exploration-and-victorian-imperialism.
  3. Nazia Parveen (2021). Kew Gardens director hits back at claims it is ‘growing woke’. The Guardian. https://www.theguardian.com/science/2021/mar/18/kew-gardens-director-hits-back-at-claims-it-is-growing-woke
  4. Bathala, D. (2020). Botanic Gardens and Quinine: To Cure or Colonize? Places Journal. https://placesjournal.org/workshop-article/botanic-gardens-and-medicine-to-cure-or-to-consume/
  5. Anonymous (1900). The Malaria Expedition to West Africa. Science, 11:262, 36-37. https://doi.org/10.1126/science.11.262.36
  6. Deb Roy, R (2018). Decolonise science – time to end another imperial era. The Conversation. https://theconversation.com/decolonise-science-time-to-end-another-imperial-era-89189
  7. Boscolo, M. (2018). Decolonizzare la scienza. Il Tascabile. https://www.iltascabile.com/scienze/scienza-colonialismo/
  8. Trisos, C.H., Auerbach, J. & Katti, M. (2021). Decoloniality and anti-oppressive practices for a more ethical ecology. Nat Ecol Evol 5, 1205–1212. https://doi.org/10.1038/s41559-021-01460-w
  9. Martin A. Nuñez (2022), Twitter thread, https://twitter.com/Martin_A_Nunez/status/1559518587127209985?s=20&t=VTOo8e8muypwznf5ldc_Jg
  10. AOS Leadership (2021), English Bird Names: Working to Get It Right. https://americanornithology.org/english-bird-names/english-bird-names-working-to-get-it-right/
  11. Ponce De La Vega, L. (2020). Towards Online Decoloniality: Globality and Locality in and Through the BHL. Biodiversity Heritage Library Blog. https://blog.biodiversitylibrary.org/2020/09/towards-online-decoloniality.html
  12. Pitt Rivers Museum. Critical changes to displays as part of the decolonisation process. https://www.prm.ox.ac.uk/critical-changes
  13. Das, S. & Lowe, M. (2018). Nature Read in Black and White: decolonial approaches to interpreting natural history collections. Journal of Natural Science Collections 6, 4 ‐ 14. https://natsca.org/article/2509
  14. Indigenous Land & Data Stewards Lab (2022). Understanding roles and positionality in Indigenous science & education. https://www.indigenouslandstewards.org/resource-hub-blogs/understanding-roles-and-positionality-in-indigenous-science-and-education
  15. Armenteras, D. Guidelines for healthy global scientific collaborations. Nat Ecol Evol 5, 1193–1194 (2021). https://doi.org/10.1038/s41559-021-01496-y
  16. Asase, A., Mzumara-Gawa, T. I., Owino, J. O., Peterson, A. T., & Saupe, E. (2022). Replacing “parachute science” with “global science” in ecology and conservation biology. Conservation Science and Practice, 4( 5), e517. https://doi.org/10.1111/csp2.517
  17. Singeo, A., & Ferguson, C. E. (2022). Lessons from Palau to end parachute science in international conservation research. Conservation Biology, 00, e13971. https://doi.org/10.1111/cobi.13971
  18. Shaw, A.K. Diverse perspectives from diverse scholars are vital for theoretical biology. Theor Ecol 15, 143–146 (2022). https://doi.org/10.1007/s12080-022-00533-1
  19. Ramírez-Castañeda, V., Westeen, E., Frederick, J., Amini, S., Wait, D., Achmadi, A., Andayani, N., Arida, E., Arifin, U., Bernal, M., Bonaccorso, E., Bonachita Sanguila, M., Brown, R., Che, J., Condori, F., Hartiningtias, D., Hiller, A., Iskandar, D., Jiménez, R., Khelifa, R., Márquez, R., Martínez-Fonseca, J., Parra, J., Peñalba, J., Pinto-García, L., Razafindratsima, O., Ron, S., Souza, S., Supriatna, J., Bowie, R., Cicero, C., McGuire, J. and Tarvin, R. (2022). A set of principles and practical suggestions for equitable fieldwork in biology. Proceedings of the National Academy of Sciences, 119(34). https://doi.org/10.1073/pnas.2122667119

Studying Ireland’s ocean giant: An interview with basking shark researcher Haley Dolton

Studying Ireland’s ocean giant

An interview with basking shark researcher Haley Dolton

The basking shark, Cetorhinus maximus, is the second largest shark in the world and is regularly seen swimming off the coast of Ireland. But how much do we really know about these ocean giants? In this installment of the EcoEvo blog our co-editor, Lucy Harding sat down with PhD candidate and basking shark researcher, Haley Dolton to find out what it’s like studying these enormous sharks.


Lucy: So Haley, what was it about sharks that first got you interested in them?

Haley: I remember first being interested in sharks when I was reading an encyclopedia of animals and I read that sharks were fish! And that kind of blew my mind because of what I knew about sharks, they were more like mammals in my head; really powerful, can birth live young, can be social. So yeah, that really intrigued me. And when I started reading about them (because this was before the Internet!), and learnt more, like that they have these amazing senses, electrical senses, and they’re capable of doing amazing behavioural things, I think that really sparked my interest in sharks.

Three basking sharks swimming together in Irish waters (photo captured by Haley Dolton).

Lucy: What sets basking sharks apart from other large-bodied sharks, for you? Why study them over white sharks for example?

Haley: I know this sounds almost like a throw-away answer but I actually kind of fell into basking shark research, and then I grew to love them! It was the first opportunity that I was given to work in shark research in the Isle of Man, working with Manx Basking Shark Watch, and I just remember the first time I saw one I was like, “Oh my God, what is that?!” and it came right up to the boat, and I remember being shocked by the size of it! Any shark documentaries I’d seen, the only sharks really that were featured years ago were great whites because they’re the most *air quotes* “exciting” shark, but then I saw this basking shark, with the way it swims and what it looks like and I thought “Oh that looks like a great white but it’s massive!”. I think that that really sparked my interest in them.

Haley Dolton surveying for basking sharks on the bow of the research boat.

I learned more about them from being in the field and reading about them, I was trying to figure them out because they didn’t make a lot of sense to me. For example, they feed on zooplankton (so they’re filter feeders) and they’re the second largest shark species capable of undertaking powerful behaviours, but they feed on microscopic prey, all of this got me thinking “How are they doing this?!”. So I got obsessed with how weird they are! Like how are they behaving like they do?! As another example, they aggregate in large numbers, and we don’t really know why!

(Haley scans the water hoping to spot a shark fin. Photo captured by Dr Nicholas Payne).

We think it’s maybe related to mating or for saving energy, as they swim close to each other, but you know seeing that in the wild, for yourself, it really sparks the ideas in the mind and that set me on the path to studying basking sharks over any other shark species. That’s not to say that I’m not interested in other shark species of course, but more that it was just circumstance which led me to basking shark research in the first place, and then I fell in love with how weird they were!

Lucy: Well, that’s a good point you make in that, for research, you don’t always have to follow a particular species or a particular project. If you more follow opportunities, you never know where they’ll lead you to, and it could lead you into something that interests you more than you realised!

Haley: Yeah, that’s it! When I went to the Isle of Man, I learned loads about research and what areas of research there were. So, for instance, we were doing satellite tagging and collecting DNA samples and this is what I actually wanted to go into at the time, I wanted to use DNA to carry out genetic research of shark species and look at the evolution of traits. And so, I originally started off being interested in that question and then when I saw that they were doing this amazing satellite tagging work, with behavioral and social studies, whether that’s on the human side, so looking at the impact of anthropogenic activity on basking sharks, or whether that’s the social side of the fish themselves, studying how they gather in large numbers! So, that’s where I first got introduced into loads of different scientific areas of research which focused on this one species.

“without knowing enough about your study species, you can’t effectively conserve them”

Lucy: So, are basking sharks an endangered species?

Haley: Yes, basking sharks are an endangered species. They’re endangered globally which means that they’re of ‘conservation concern’. The reason that we’re researching them, particularly in the Payne lab at the minute, is because we don’t really know a lot about what makes them tick.

Aerial view of basking shark feeding off the West coast of Ireland. The gills can be seen fanned open as the animal filter feeds (photo captured by Haley Dolton).

We’re trying to learn more about them because without knowing enough about your study species, you can’t effectively conserve them. To give an example, imagine if someone was trying to conserve me and they saw one day – let’s pick a really bad day – where I’ve gone to the pub for hours, then eaten a pizza, and I haven’t really moved a lot. It might make people think, that’s all I do so let’s give her that all the time! Well, I wouldn’t last very long! I’d have a great time, but I wouldn’t be very healthy.

And that’s why we study these animals, to get as much information as possible to really affect conservation policy and change because these are vulnerable species.

There were massive fishing industries for them, including in Irish waters, and although we no longer have those fisheries, they’re still very vulnerable to being accidentally caught in things like pot lines or in other fisheries related equipment. They are a vulnerable species to lots of kinds of anthropogenic activity, making conservation efforts even more important.

Two basking sharks swim underwater, off the West coast of Ireland (photo captured by Haley Dolton).

Lucy: And you said they are filter feeders and very large, so does that make them a difficult species to study?

Haley: Basking sharks are an unusual study species for sharks, in that we can’t fish for them or attract them to the boat, so we can’t research them in the ways we would with other species where you can do that. So, we’re very dependent on where and when they turn up and whether there’s a good weather window for us to get out and study them, which off the Irish coast is quite rare! So, everything needs to come together to allow us to go out and study them and in reality, I only have around six days to get my tags deployed, which just highlights how difficult they are to study.

Lucy: What does your current research on basking sharks focus on? 

Haley: My current research really focuses on getting back to basics of what we know about the general biology of these animals. For example, looking at their anatomy, whether that’s the larger structures or microscopic features. I’m looking at how their anatomy can explain their behavior. So, as I said there’s so much we don’t know about basking sharks.

At the minute, off the Irish coasts, we’re getting hundreds of them in the spring and then later on throughout the summer, and they’re displaying this amazing behavior where they all gather and swirl around each other, which we think might lead to mating, but ultimately we don’t really know why they display this behaviour! So, my research is really focused on trying to explain these behaviors by looking at their anatomy and physiology and what we as scientists, the general public, or policymakers, can do to effectively conserve this species in Irish waters.

“it’s a really exciting time to be part of basking shark research in Irish waters”

This is all going on at an exciting time for basking sharks in Irish waters! Recently it was announced that they’ll hopefully gain protection under the Irish Wildlife Act and there’s been incredible public support for this in Ireland so it’s a really exciting time to be part of basking shark research in Irish waters and to hopefully make a positive change within their conservation.

Lucy: And when you’re out in the field, how do you actually study these animals?

Haley: Well, firstly we work closely with other researchers and the general public who very kindly tell us where and when they see the sharks; we’ve had loads of great sightings (and skippering of boats!) from the Irish Whale and Dolphin Group (IWDG) and individuals from different tour operators off the Irish coast like West Cork Charters (Dave Edwards) and Nick Masset (also part of IWDG), whose based near the Blaskets in Dingle, and of course, social media, which tells us where and when sharks have been seen. Then, we’ll scramble to get all our field kit ready and head over to the West Coast!

Normally with shark research we go out to a place where people are already fishing for sharks (for catch and release) or where we’re fishing for them for scientific research and this normally involves attracting them to the boat (with bait) but because we can’t do that with basking sharks, we basically drive the boat up and down the coast slowly, surveying with binoculars to try and spot that characteristic fin sticking out of the water.

The dorsal fin of a basking shark breaking the surface. Three other sharks can be seen finning behind also (photo captured by Haley Dolton).

Lucy: And so, when you do spot a fin, what happens next?

Haley: In basking shark research we actually deploy the biologgers without touching the shark at all (apart from the actual deployment itself). We carefully approach the shark in the boat, deploy the tag, and then we’re off again! This all takes a matter of seconds, so that we’re actually only beside the animal for a couple seconds as we deploy the biologger. Some sharks don’t even react at all, they just carry on swimming or feeding at the surface, which is a good indication they haven’t been disturbed.

I should point out that any research we do on sharks is conducted under license from the HPRA (Health Products Regulatory Authority) ethics board for animal studies, as to not cause stress to the animals.

Haley uses a radio antenna to listen for the radio tag they have attached to a basking shark (photo captured by Scott DeGraw).

Lucy: How is your research going so far? What are your plans going forward for the research?

Haley: The research that is focused on basking shark biology, ecology and behavior has gone really well so far and we’ve found out some really, really interesting things which I’m dying to talk about but I can’t at the moment, but watch this space! There’s lots of cool stuff coming soon!

My research interest has grown from my supervisors, Nick Payne, Andrew Jackson and Jonathan Houghton, supporting my curiosity for this species and a collaboration I made when I first started shark research all those years ago (Jackie and Graham Hall who ran Manx Basking Shark Watch). Now this project is growing and we’ve established new collaborations with some incredible researchers from Oregon State University (Big Fish Lab) and Stanford University, who came over this year for fieldwork. Together, we’re trying to collect and analyse even more data about what the sharks are doing and how they’re behaving. There’s been lots of steep learning curves with doing this research as well, but overall, it’s gone really well and we found out some really cool stuff, which will hopefully come out soon!

“if you do see something, take lots of pictures”

Lucy: That’s great, I can’t wait to see what you’ve found out! Well, for my last question, as a lot of our readers may not necessarily be in the scientific field, is there any way they could get involved in conservation efforts or research to help these threatened sharks?

Haley: Yes! People can get involved by reporting their sightings of any sharks to groups such as the Irish Basking Shark Group and Irish Whale and Dolphin Group and these can feed into scientific research. Also, if you do see something, take lots of pictures because then it’s possible to identify individuals by nicks and cuts on their dorsal fin and this is a great example of a non-invasive way of looking at social behavior or whether sharks are returning year on year to an area, indicating it might be an important area for feeding or breeding or pupping.

You can also get involved with any campaigns that you see going on for the protection of these animals. Support from the public, alongside the work and support from Minister Noonan and TD Jennifer Whitmore is actually what was instrumental in the recent campaign to have the basking shark added to the Irish Wildlife Act; it was a great campaign led by the Irish Basking Shark Group to get basking sharks protection in Irish waters and part of that was a petition that was signed by the general public. It gained incredible support from the public, with I think over 20,000 signatures, which is amazing and hopefully they’ll be protected under Irish law soon.


Haley is a PhD student in Zoology at Trinity College Dublin, and you can find her on Twitter @haleydolton. Haley’s work has been funded by the Irish Research Council, with support from the Fisheries Society of the British Isles. Nick Payne is funded by Science Foundation Ireland.

Trinity’s Wildflower Meadow: A Success Story

by Aoife Robertson

The wildflower meadow outside the front gates of Trinity College Dublin.

In February 2020, a Trinity Green Campus poll was held amongst Trinity College Dublin (TCD) staff and students to convert the lawns of Front Gate into a wildflower meadow. Of the 13,850 people who voted, 12,496 voted in favour, a 90% majority. This was the largest number of participants that Trinity Green Campus had ever had, likely due to the extensive communications regarding the campaign, with features being included on local, national, and international news channels. The project has been deemed a success with support from both the public and TCD community and it continues to flourish outside the historic Front Gate of TCD. The TCD wildflower meadow is one of many similar “rewilding” projects that are currently being undertaken to increase biodiversity in urban and rural spaces but why are they such a popular rewilding choice? And how can we ensure their success?

Oliver Goldsmith among the ‘wildflowers’ at Trinity College Dublin. Photograph: Dara Mac Dónaill

Let’s take it that any project, ecological or otherwise, can be deemed successful if it has fulfilled the goals that it set out to achieve. The majority of rewilding and restoration projects aim to introduce species to an ecosystem as a way of restoring ecosystem functions and re-establishing natural processes that existed previously. In the case of wildflower meadows, the species being introduced are herbaceous plants and the ecosystem functions that they aim to restore usually relate to pollination or biodiversity, although this is not always the case. Even the broadest generalisation of the aims of wildflower meadows lacks clarity on the type of ecosystem functions that are expected to be restored. This is due to the aims of any restoration effort being dependent on the social and cultural views of the people carrying out or interacting with the project. Therefore, each individual wildflower meadow project must define the unique aims pertaining to it before a decision can be made on its success.

The two most documented spatial differences are between North America and Europe. In North America, the landscapes that were present before European colonisers have long been idolised and perpetuated as the “perfect wilderness,” with many attempts being made to conserve and restore these ecosystem types. As such, projects which aim to restore pre-colonisation landscapes are often deemed to be successful and are well received by the public. Large wildflower meadows that are re-planted in areas that previously were inhabited by similar species and vegetative communities are also deemed successful and serve as a reminder of the great prairies and grasslands of 1500’s North America. However, when urban wildflower meadows are planted many North Americans question whether it is truly restoration, since there were no previous wildflower meadows present here which can be said to be restored. Therefore, if the aim of this example is to be an act of restoration or rewilding the project is unable to be successful.

Contrasting to this, European rewilding does not explicitly try to recreate a single period, owing to the long established agricultural and industrial disturbance that has been occurring in the area since ~7000 B.C.. Therefore, the matter of projects emulating an exact period does not cause the same obstacles to success that are seen in North America. Instead, a range of dates are replicated, from Pleistocene to pre-industrial. There is a much lesser demand for projects on the large scales seen in North America, with the reintroduction of large carnivores causing public outcry. When concerning wildflower meadows, small pockets of pre-existing meadows or similar habitats are still naturally established in Europe, such as hedgerows and agricultural wildflower meadows. Thus, it is easier for people to view wildflower meadows projects as restoration.

Education also plays a key role in the success of wildflower meadows. Some studies have shown that the public perceives nature as consisting of trees and forested areas, and so projects that remove trees, even for positive environmental reasons, are perceived negatively. Other studies, however, have shown contrasting results, recording preferences towards annuals over larger trees or fruit plants. Interestingly, this same study also recorded that 54% of participants did not know what wildflowers were. This indicates that asking the public whether they prefer wildflowers over trees may not give accurate data as the responders are much more familiar with one subject over the other. Where images were shown, participants revealed a preference for wildflower meadows over images of herbaceous and formal bedding styles. The degree to which they preferred wildflower meadows over other bedding styles increased with an increase of plant species richness. This is a positive sign for those who wish to use wildflower meadows to restore pollinator and biodiversity functions, as it suggests that there should be public support of the projects if the public are adequately informed on wildflower meadows.

The TCD wildflower meadow project had clear goals, aiming to demonstrate that grass lawns were not the only option for planting in a formal setting. By prioritising the goal of informing the public on the project aims, TCD reduced arguments that may have otherwise arisen over the success of the project. Notably, before the project began, the idea was put to a vote by the staff and students at the college. As mentioned previously, the poll was hugely successful likely due to the amount of publicity it received. In order to combat any doubt surrounding the use of non-native species, information was provided about the reasoning for including non-native species and why they would be beneficial to the project, for example, the increased pollination potential of the site and the aesthetic benefits of the species chosen. The clear communication regarding the project appears to have ensured the wildflower meadows success. The public support for a wildflower project in the heart of the capital city centre could also in part be due to the site being in Europe. Alternatively, the public support could be due to the project being planted shortly before the Covid-19 pandemic, which has been hypothesised to have increased public appreciation for green spaces. Many of the questions posed remain unanswered due to the modernity of the topic and rapidly shifting public opinions. As developments occur, both academically and publicly, more light will be shed on the success of wildflower meadows and how projects can be best implemented. However, for now, debates on the topic should be encouraged and the public should be involved in the conversation. Wildflower meadows have a huge potential to educate people about their environment and can be implemented on many scales, being made suitable to whichever environment is present. The people managing these projects should consider the ecological and social environment within which they work and make efforts to adapt to the unique environment in which they may find themselves. There is plentiful research into the social dynamics of rewilding and restoration projects and so it can be concluded that the issue lies with project managers and a potential lack of consideration of the social factors at hand.

Aoife is a final year Environmental Sciences student at Trinity College Dublin who recently completed her undergraduate thesis with Dr Piggott and Dr Penk. She is interested in urban rewilding and quantitative ecology and hopes to work in these areas in the future.

From a Frozen Zoo Then Back to Life: A Clone’s Story

The media love to brand cloning as an apocalyptic threat that involves mad scientists, evil doppelgängers, and mutated monsters like Frankenstein. Thanks to such misconceptions, cloning discussions highly focus on the idea of human clones and what this means for our individual identity. However, much like the Sun does not revolve around the Earth, life is more than mankind. This human self-entitlement draws away from the fact that cloning can be a tool used to right our wrongs, as cloning has the potential to save species that we have endangered or even resurrect species that we have driven to extinction. But before Jurassic Park and Ice Age fans get too excited, I’m here to convince you that we should focus our cloning resources on reverting species decline rather than de-extinction. Read on with an open mind and look past the assumptions that the media have distilled in how we think and understand the science of cloning.

Credit cover picture: USFWS Mountain Prairie is licensed under CC BY 2.0

To demonstrate how cloning can successfully save a dying species, I am going to take you on a journey as we explore the life, death and rebirth of a clone named Elizabeth Ann. Elizabeth Ann is a black-footed ferret whose species is native to the United States. In the 1970s, this species was thought to be extinct after farmers and ranchers destroyed the main food source of black-footed ferrets, the prairie dogs.

However, a ranch dog named Shep surprised the world when he uncovered a remaining population in 1981. These surviving black-footed ferrets were monitored intensely and the population seemed to be thriving, up until they were nearly wiped out by canine distemper and sylvatic plague. The very last 18 black-footed ferrets were rounded up and taken by the Fish and Wildlife Service before it was too late.
Of the remaining 18 black-footed ferrets, only 7 were successful in breeding and passing their genes onto offspring. As a result, all newborns arose from the same 7 founders, meaning all black-footed ferrets alive today are related. This incestuous existence creates a population with little genetic diversity which can wreak all sorts of havoc on the success and maintenance of a population. You see, differences and variations in genes are what enable a species to fight off diseases and better adapt to their surroundings. Without this diversity, a species is less likely to survive on this ever-changing Earth.

The black-footed ferret cloning process began when forward-thinking conservationists at the Wyoming Department of Game and Fish suggested that the cells of a female black-footed ferret, named Willa, be sent to the Frozen Zoo within the San Diego Zoo Wildlife Alliance (SDZWA) when she died in 1988, as Willa had a particularly diverse genome. These cells became one of the 1,100 cryopreserved (frozen) cells of rare, endangered, and even long-dead species who are silently waiting for technology to enable their return. 30 years later, Willa’s frozen cells were used to make Elizabeth Ann, along with the collaborative help from the U.S. Fish and Wildlife Service, ViaGen Pets & Equine, Revive & Restore and the SDZWA.

The cloning process involved taking eggs from sedated domestic ferrets (a related species) and replacing the nucleus and genetic material of the eggs with the contents of Willa’s cells (picturing a yolk transplant between a chicken and a duck egg helps me make sense of it). The resulting embryos were implanted into a surrogate domestic ferret and, lo and behold one embryo took and a black-footed ferret foetus was conceived.
On the 10th of December 2020, Elizabeth Ann was born via C-section with tests on her 65th day revealing that she is, in fact, of the black-footed ferret species and a clone of the pre-existing Willa. The arrival of Elizabeth Ann brings new hope for the species as a broadening of the gene pool may help black-footed ferrets reproduce more easily and become more resilient to disease and environmental stressors. Therefore, cloning can aid in overcoming the genetic limitations that are disrupting the recovery of the endangered black-footed ferrets. If Elizabeth Ann successfully breeds and provides greater genetic diversity, this will legitimise cloning as a reproductive technology for the conservation management of black-footed ferrets and other endangered species.

Although cloning can be a successful way of saving living species from dying out, cloning specialists at Revive & Restore continue to work towards resurrecting extinct species such as the passenger pigeon and the woolly mammoth. But take note, bringing an extinct species back to life is very expensive, much more complicated, and highly controversial. There’s no knowing if an extinct species could even survive in the climate we have created today. So, let’s stick to what we know can work and clone to save our existing species first.

What do you think?

Keep up-to-date with Elizabeth Ann’s journey via the black-footed ferret conservation project Facebook page: https://www.facebook.com/FerretCenter

References:
1. Maio, G. (2006). Cloning in the media and popular culture: An analysis of German documentaries reveals beliefs and prejudices that are common elsewhere. EMBO reports, 7: 241-245
2. Ryder, O.A. and Benirschke, K. (1997). The potential use of “cloning” in the conservation effort. Zoo Biology: Published in affiliation with the American Zoo and Aquarium Association, 16: 295-300.


Based on the ideas discussed in: Shapiro, B. (2017). Pathways to de-extinction: how close can we get to resurrection of an extinct species?. Functional Ecology, 31: 996-100.

Herbarium in Trinity College Dublin

A herbarium contains collections of dried, pressed and therefore preserved plant material. Herbaria are amassed primarily for the purposes of understanding plant evolution, biogeography and systematics but are also useful in very many other domains including, for example, pharmaceutics, climate change, ecology and conservation.

The interior of the TCD herbarium (on the left and in the middle) and a typical set of cabinets in the TCD herbarium (on the right) showing the array of preserved specimens in presses. Those specimens in red covers are type specimens – specimens which are the reference specimens for the species.

Whilst the TCD herbarium is internationally renowned it is perhaps not as well know as it should be inside the walls of TCD.

Continue reading “Herbarium in Trinity College Dublin”

The 2020 EcoEvo Hall of Fame

At the start of each year we ask the EcoEvo contributors to share their favourite scientific publications from the past year and why they found them interesting, inspiring, or otherwise worthy of inclusion in the Hall of Fame. Keeping with tradition, here are the EcoEvo Hall of Fame entries for 2020! And if you enjoy reading about our favourite papers from 2020, remember you can also check out our favourites from 2017, 2018 and 2019, too!

Chosen by Andrew Neill

Read the full People and Nature paper here.

I really enjoyed this paper because it tackles a really difficult topic at the intersection of poverty, human rights, development, conservation, and sustainability. It is important to remember that conservation will never meet its objectives without considering how people depend on nature for their needs and livelihoods. The areas of richest biological diversity (and therefore conservation potential) are usually in developing countries with communities experiencing poverty. This paper collects responses from conservation practitioners to examine their viewpoints on poverty in the context of their work. 

F I G U R E 3. Comparison of discourses on five key dimensions of difference. Discourses are compared on a simple ordinal scale, and accordingly should only be interpreted in relative positions to one another (for instance, D3 is more ecocentric than D1).
© 2020 The Authors. People and Nature published by John Wiley & Sons Ltd on behalf of British Ecological Society. The article is distributed under the terms of the CC-BY 4 license.

They found some areas of agreement such as the poorest people should not be expected to shoulder the costs of preserving a global public good (the conservation of biodiversity). However, they also identify differences between responses: Is the focus placed on meeting the needs of people or more closely aligned with the “do no harm” principle? Is poverty a driver of nature’s decline, or is it the over-consumption that drives environmental degradation? This paper was a great opportunity to question my own views on these very complex ideas and to appreciate the wide diversity of thought going on across the world of conservation. 

Fisher, J.A., Dhungana, H., Duffy, J., He, J., Inturias, M., Lehmann, I., Martin, A., Mwayafu, D.M., Rodríguez, I. and Schneider, H. (2020). Conservationists’ perspectives on poverty: An empirical study. People and Nature2 (3), pp.678-692.


Chosen by Fionn Ó Marcaigh

Read the full Nature Communications paper here.

This paper is based on a truly colossal undertaking: to collect their data on dispersal ability, Sheard et al. measured the wings of 10,338 bird species, i.e. 99% of all bird species on Earth. They used the Hand-Wing Index, a measure that correlates with aspect ratio and basically tells you how long and pointed the bird’s wing is. The higher this number (i.e. the pointier the wing), the better the bird will be at dispersing and flying long distances.

a Diagram showing linear measurements used to calculate HWI taken on a standard museum study skin (secondary feathers shown in pale grey; primary feathers in dark grey). Wing length (Lw) is the distance from carpal joint to the tip of the longest primary feather; secondary length (S1) is the distance from carpal joint to the tip of the first secondary feather; Kipp’s distance (DK) is the difference between Lw and S1b Open wing of a passerine bird showing how Lw and S1 are related to the wing’s span and width, and hence to its aspect ratio. c Because it is correlated with the aspect ratio, HWI is in theory positively associated with flight efficiency and key aspects of dispersal ability, including dispersal distance and gap-crossing ability.
© The Author(s) 2020. This article is distributed under the terms of the CC BY 4 license.

This is important for evolution, as the more birds that are able to fly between distant populations the more gene flow there will be and the less likely the populations are to diverge. Sheard et al. found important links between dispersal ability and geography and ecology, as tropical and territorial birds, had lower Hand-Wing Indices and migratory species had higher ones. It’s fascinating to see how these traits affect the ability of a species to move around, which in turn dictates where that species will be found in the world. The authors have made this incredible dataset freely available and it is sure to inform new insights into bird ecology and evolution for years to come.

Sheard C., Neate-Clegg M. H. C., Alioravainen N., Jones S. E. I., Vincent C., MacGregor H. E. A., Bregman T. P., Claramunt  S. & Tobias J. A. (2020) Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nature Communications, 11 (2463).


Chosen by Sam Ross

Read the full Science paper here.

The COVID-19 pandemic has been extremely challenging for many, so it was great to see some excellent science coming from the ‘natural experiment’ offered by COVID-19 movement restrictions. The authors show that during the COVID-19 restrictions anthropogenic noise (from vehicles etc.) in the San Francisco Bay Area reached a 70-year low, characteristic of the mid-1950s. They use a long-term dataset of White-Crowned Sparrow recordings to show that during the COVID-19 lockdown, when human noise pollution was minimal, Sparrows exploited the emptied acoustic space (usually occupied by human-related noise) by producing higher-performance songs at lower amplitudes, to maximise song distance. The authors highlight the rapidity with which behavioural traits (song characteristics) adapted to changes in human activity, suggesting incredible plasticity and potential resilience to pervasive anthropogenic pressures like noise pollution. To me, this study is a perfect example of nature’s resilience, and also on finding opportunity from tragedy (research made possible by a global pandemic).

Derryberry E.P., Phillips J.N., Derryberry G.E., Blum M.J., Luther D. (2020). Singing in a silent spring: Birds respond to a half-century soundscape reversion during the COVID-19 shutdownScience, 370, 575-579.


Chosen by Jenny Bortoluzzi

Read the full Marine Policy paper here.

This paper looked at the human behavioural responses to a blanket ban on thresher shark fisheries in Sri Lanka and fisher’s perceptions of different aspects of the ban. A blanket ban means a complete prohibition on exploitation of a species, and Thresher sharks are considered to be the most vulnerable species of pelagic sharks. A blanket ban might therefore seem like a straightforward and easy conservation measure to protect them. But this study looked at the human impact behind such a drastic policy decision. A ban like this has consequences for the livelihoods of fishers – particularly smaller fishermen who rely highly on thresher shark landings to provide for their families. The study clearly shows the disparity in the impact this conservation policy has had between fishers who rely on these catches to survive and those for whom they are not the primary catch.

The biggest message I took from this paper is how important it is that human lives are taken into account when making conservation decisions; and more importantly that scientists and policymakers need to involve communities early on in the process, communicate better and work together, not against each other if we want conservation to be effective – and supported. This is a message I think more scientists need to hear and integrate into their work and one I hope to take forward in my future career.

Collins C., Letessier T. B., Broderick A., Wijesundara I., Nuno A. (2020). Using perceptions to examine human responses to blanket bans: The case of the thresher shark landing-ban in Sri Lanka. Marine Policy, 121 (104198).

Separating signal from noise in acoustic biodiversity surveys

We can now use acoustic recording equipment to monitor all the sounds produced in an ecosystem. By recording and listening back to sound in this way, we hope to capture useful information about nature. One way to do this is using ‘acoustic indices’, mathematical summaries of the acoustic information contained in audio recordings. But how reliably do such indices actually reflect the biodiversity many of us are trying to monitor and understand?

Continue reading “Separating signal from noise in acoustic biodiversity surveys”