School of Natural Sciences Postgraduate Symposium 2014: Part 3/4

Rhododendron

On the 20th and 21st of February we had our annual School of Natural Sciences Postgraduate Symposium. Over the course of two days many of our PhD students presented their work to the School. We also had two interesting plenary talks from Dr Sophie Arnaud-Haond (Ifremer) and Dr Lesley Morrell (University of Hull). Unfortunately our third speaker, Dr Fiona Jordan (University of Bristol) had to cancel due to illness.

For those of you who are interested in exactly what we work on here at EcoEvo@TCD, here are the abstracts from the PhD student presentations. Check out the TCD website for more details!

Brian Murphy: The biocontrol and biofertilisation potential of fungal root endophytes

Fungal infections of crops are often devastating and costly. However, not all fungal infections are detrimental, and some are beneficial. Beneficial root infections often involve symbiotic root endophytes. Benefits to plants infected with endophytic root fungi include an increase in seed yield, enhanced resistance to pathogens and improved stress tolerance. Here, we report that grain yield in cold-stressed barley can be significantly increased after inoculation with a fungal root endophyte provided that a threshold level of nutrients is provided. We also show that endophytes derived from a wild barley species may provide similar benefits for barley grown under drought stress with low nitrogen input. These results suggest that locally-derived fungal root endophytes may have potential for reducing agricultural nitrogen input whilst maintaining acceptable yield. The full potential of these organisms is still to be determined and further studies are urgently required to develop specific beneficial root– endophyte associations, or combination of them, that are tailored to particular crops for maximum impact in agriculture. Many fungal root endophytes are amenable to axenic culture, sporulate readily and can be multiplied rapidly, suggesting that they could be developed as effective crop treatments in stressed crops and may have the potential to increase crop yield provided that the environmental and partner-specific conditions are met. The discovery of previously unrealised benefits associated with these fungi holds great future promise for developing economically and ecologically viable crop

Alwynne McGeever: The quantification of tree population dynamics*

*Highly commended

This project aims to quantify how the populations of Elm and Pine have changed geographically in Europe over the last 6000 years. Achieving this involves 3 tasks; (1) collecting pollen data on these species from the European pollen database (EPD), (2) comparing the timing of events in the populations at different geographic scales using the R package Bchron and (3) a focused study on the dynamics of Scots Pine in Ireland. Task 3 has two sub-tasks; (a) investigating the native status of Scots pine in Ireland, (b) investigating the past growth of Scots pine on bog surfaces in Ireland. This work will discuss the progress so far. Data has been successfully obtained from the EPD. Probability distributions of when events in the populations occurred in Ireland, the UK and Austria have been plotted, allowing the timing and synchronicity to be compared. The growth of Scots pine on bog surfaces in Ireland in the lead up to the Pine decline was also analysed, for which there were 3 distinct phases over the last 9000 years. The principle remaining work involves plotting events for every country in Europe and extracting pollen from a core to investigate a putative native population of Scots pine in the Burren, Co. Clare.

Aidan Walsh: The identification of important areas of plant diversity in Ireland

Records of vascular plants from the island of Ireland have been collated into a single plant distribution database. Rare and threatened plant species records were identified and subsequently mapped at the tetrad (2km by 2km) scale. We examined the overlap in spatial coverage between areas designated for the protection of biodiversity in Ireland and tetrads containing rare and threatened plant species. A proportion of the locations of these species occurred in the wider countryside and will not benefit from the protection provided by designated areas. For example, 22% of tetrads with records of Flora Protection Order species occurred outside of designated areas in the Republic of Ireland. The combination of designated areas and landscape within 4km of the designated areas contained over 90% of the locations where records of rare and threatened plant species occurred. These results indicate the importance of both designated areas and the wider countryside for biodiversity conservation, and offer an opportunity for the spatial targeting of conservation actions. The project will ultimately develop a method to identify important areas of plant diversity at the tetrad and hectad (10km x 10km) scale.

Susannah Cass: Is the grass ‘greener’? Biodiversity impacts of legume-supported grasslands.

Biodiversity is of great importance for the delivery of many key ecosystem services in agriculture (Altieri and Rogé, 2010) such as pollination, weed suppression, soil conditioning and pest control. Legume crops have a long history of use in traditional agricultural systems for the ability to fix atmospheric nitrogen (Graham and Vance, 2000) but have suffered a decline due to the ready supply of cheap inorganic fertilisers over recent decades (Graham and Vance, 2003). The Legume Futures project (EU FP7) aimed to investigate the potential for promotion of wide-spread legume-supported cropping in Europe, and the potential environmental impacts of such systems. We surveyed non-crop vegetation and earthworm (Lumbrucideae) biodiversity in semi-permanent and permanent agricultural grasslands, with and without legumes, at four established field sites belonging to the Legume Futures consortium (www.legumefutures.de). We found that responses to legume-supported cropping were different for non-crop vegetation and earthworms, and were dependent on the measure of biodiversity – abundance, species richness, diversity indices etc – considered. Mixed grass-legume swards supported more even and more diverse (Shannon’s H’ Index) non-crop vegetation communities but had less obvious impacts on earthworm communities.

Danielle McLaughlin: The molecular and morphological impact of notochord manipulation on the foregut in 3D explant culture

The notochord is a vital structure of vertebrate embryos, defining the anterior-posterior axis and strongly influencing molecular patterning and morphology of adjacent tissues such as the dorsally located neural tube. Despite their close proximity, the influence of the notochord on the ventrally located foregut as it separates to form oesophagus and trachea is undetermined. Oesophageal atresia is a relatively common congenital birth defect of unknown aetiology in which irregular foregut separation results in discontinuity of the oesophagus. In a well established model of this condition, the adriamycin mouse model, structural abnormalities of the notochord, frequently referred to as branches, are a distinctive feature. These notochord branches have a clear association with the site and severity of co-existing tracheo- oesophageal malformations. Further clinical and experimental examples of developmental disruption of the notochord occurring in conjunction with gastrointestinal tract anomalies including oesophageal atresia exist. We hypothesise that the notochord contributes essentially to the outcome in oesophageal formation and we have established an in vitro technique of 3D explant culture to examine the morphological and molecular impact of physical notochord

Sarah Hearne*: Limitations of the Fossil Record in Understanding Macroecological Trends

*Unfortunately Sarah was unable to attend but we still have her abstract

“To know your future, you must know your past” (Margaret Jang)

Since the fossil record was first recognised as the history of life on earth it has been an invaluable aid to understanding the evolution and diversity of life. It has been used to help explain and understand past and present distribution of biota across the globe and has increasingly informed our understanding of how life reacts to changes whether sudden, such as asteroid impacts, or gradual, such as climate change. Yet there are a host of biases inherent in the fossil record that make interpretation difficult. Many of these biases are either unknown or ignored by many researchers despite the fact that they are significant and limit the ability of the fossil record to reveal macroecological trends. Until these biases are accepted as problematic and efforts are made to counter them, macroecological interpretations of the fossil record will be little more than speculation.

Paul Egan: Variation of nectar toxins in space, time and habitat – is there evidence for functional significance?

The presence of toxic secondary metabolites in nectar represents somewhat of an ecological paradox. Although a number of explanations have been offered which pose a functional significance of this phenomenon; empirical tests of these hypotheses remain scarce. Here we employ use of an invasive species (Rhododendron ponticum) ideally suited as a model system, and investigate expression of diterpene grayanotoxins in nectar. Through comparisons within and between the species’ native and invasive range, possible post-invasion evolution and plasticity of this trait is explored in response to a number of spatial and environmental factors. In addition, a functional basis to toxic nectar is tested through examination of two potentially opposing processes: A.) if or how toxin levels are regulated in nectar over the course of phenological development of flowers, and B.) the extent to which phenotypic correlation with other plant tissues may in fact explain expression of toxins in nectar (e.g. as due to anti-herbivore defence in phloem, leaves, flowers etc.). In general, our findings reveal some important factors which influence nectar toxicity, indicative of both independent and adaptive regulation of this trait within plants. Our current studies seek to further test this purported adaptive function, examining the simultaneous and opposing selection pressures posed by pollinators and herbivores on toxin production, and the resultant impact on plant fitness.

Image Source: Wikicommons

How Good is the Fossil Record?

crinoid

One of the projects I’ve been working on recently has concerned diversity in the fossil record. In broad terms I’m looking at how diversity has changed over the last 540 million years, a period known as the Phanerozoic which starts at the Cambrian explosion and continues to this day. I want to try and understand what causes the periodic increases and decreases in diversity.

I’m not a palaeontologist, so this work has involved a massive learning curve in order to understand how we know what we know about the fossil record. What I’ve learned has led me to have an enormous respect for palaeontologists, but to also wonder whether some of the claims made on the basis of evidence from the fossil record may not be slightly overstated.

If we compared the fossil record to a court trial, I’d argue that the public perception is that the fossil record is rather like the court transcript: a full and complete record of the history of life on earth. Scientists outside the field of palaeontology probably understand that this is not true, and may liken it to more of a newspaper report on the trial: summarising, missing some details but the key facts are in place. The more I look into the fossil record, the more I think it seems like the hear-say testimony of an unreliable witness: heavily biased, missing important facts and giving probably erroneous information.

Before I get angry palaeontologists shouting at me I want to emphasise that that for short timescales or small areas I think the fossil record is brilliant and we can learn a lot about species turnover and ecosystem development. My concern comes from combining these short timescales and small areas and then using them to produce long timescale, global patterns of diversity. While it may seem like this is a sensible way to produce this data – who could possibly sample the entire earth for the entirety of the fossil record by themselves? – there are a number of so-called sampling biases that I feel make this approach potentially troubling. And while I have seen a great deal written about these biases and the efforts to reduce their effects, I have also seen research that makes me think these biases are impacting the data in ways we cannot predict.

So, after all that build-up, what are these biases? You’ll forgive me if I don’t discuss them all here, there are so many. Instead I’m going to split them into two groups and discuss these groups in very broad terms, focusing on the ones I think have the potentially biggest impacts on the patterns of diversity at the global scale. Proper palaeontologists have used a variety of different groupings, but I’ve grouped them into taphonomic biases and taxonomic biases. Taphonomy is the process of fossilisation but in this discussion it will also involve the process of the discovery of fossils. Taxonomy is the naming of species and there are a surprising number of biases that result from this seemingly simple process.

The most obvious taphonomic bias is that of the potential for fossilisation. It has been estimated that less than 10% of living species would end up in the fossil record and it would be heavily biased towards those organisms with bones or shells [1],. Many of the fossil diversity analyses are performed on molluscs as they have a good fossil record, so you might think that this would remove this problem. But the type of fossilisation affects how well an organism is preserved, if at all, and this affects molluscs just as much as other animals [2]. Plus, using molluscs assumes that they are a good model and representative of all organisms over all time which seems to be asserted without much evidence.

Another taphonomic bias is that of true sampling. At one end, not all environments are fossilised and at the other, not all fossil beds are studied by palaeontologists. In between, some fossil beds may be eroded over time and others may never reach the surface to be exposed for study. This leads to an effect called the ‘Pull of the Recent’ [3] whereby diversity increases towards the present day simply because there are more rocks available to study; the oldest ones have eroded, and the ones left are fewer in number the further from the present you go.

This sampling is not only biased in time, it is biased in space. There is a global trend in biodiversity, with highest levels at the equator and lowest at the poles, called the Latitudinal Diversity Gradient (LDG) [4]. This trend occurred throughout much, if not all, of the Phanerozoic and means comparisons of fossils between time periods must be from similar latitudes otherwise changes will say nothing about global diversity. While we may talk in terms of ‘global diversity’ it is often based on limited samples that may be predominantly from the tropics in one time period and temperate latitudes in another, yet this is rarely considered as a compounding factor when diversity is discussed.

Taxonomic biases are no less concerning. Naming fossils is more complex than naming living organisms, as the names must be based purely on the (potentially incomplete) skeleton. It is increasingly common to find living organisms that look identical but are genetically distinct species, and conversely organisms that look very different but are simply displaying phenotypic plasticity [5] yet fossils are named on the basis of their (potentially misleading) morphology which can significantly affect diversity estimates. Then there are problems of widespread fossils being given different names in different countries, or long-lived fossils being given different names in different geologic periods. Finally, there is the fundamental problem that the fossil record shows species evolving, and someone has to decide if and when a new species has formed and a new name applied. This will present itself in the data as an extinction and origination event, even when the population may not have changed in size or location.

These are just the very tip of an iceberg of biases. It may well be that palaeontologists have answers to all these biases and I have just failed to find the relevant literature. So far all I have found seems to be the claim (hope?) that all the biases will cancel each other out, leaving the true biological signal visible. I can’t be so certain. Indeed, my greatest fear is that the patterns of diversity are nothing more than the product of these biases and have little relation to the actual changes of diversity over the history of life on Earth. Reassurances to the contrary would be most welcome!

1. Nicol, D. (1977) The number of living animal species likely to be fossilised. Florida Scientist. 40, 135–139

2. Martill, D. M. (1998) Resolution of the fossil record: The fidelity of preservation. In The Adequacy of the Fossil Record (Donovan, S. K. and Paul, C. R. C., eds), pp. 55–74, John Wiley & Sons

3. Raup, D. M. (1972) Taxonomic diversity during the Phanerozoic. Science. 177, 1065–1071

4. Hillebrand, H. (2004) On the generality of the latitudinal diversity gradient. The American Naturalist. 163, 192–211

5. Bennett, K. D. (2013) Is the number of species on earth increasing or decreasing? Time, chaos and the origin of species. Palaeontology. in press,

Author and Picture Credit:

Sarah Hearne: hearnes[at]tcd.ie, @SarahVHearne

Hide and seek with a T-Rex in a drawer

Natalie Cooper and Sive Finlay already posted on this blog about the amazing old stuff you can find in a Natural History Museum (here and here). Palaeo collections are also special, I spent one week in the Smithsonian Institution Paleobiology collections to measure some Eocene American primate teeth and I was amazed by the quality of their collections. But the nice thing about Palaeo collections is that when you’re looking for a particular specimen, you always come across wonders you didn’t expect.

IMG_1197
Rows of drawers…
IMG_1199
…Containing loads of boxes…
USNM-299811
…Each one containing tiny fossils, like this Tinimomys molar.
IMG_1213
But it’s not just tiny primate teeth !
IMG_1216
Some random mammoth skull…
IMG_1218
…Can be found near paleo-shark teeth…
IMG_1221
…With some weird Helicoprion spiral teeth!
IMG_1211
Oh and yes, not to mention the dinosaurs such as this hadrosaurid skull…
IMG_1232
…Or this sauropod one.
IMG_1185
And I even found, hiding in a drawer… a T-Rex!

 

Author

Thomas Guillerme: guillert[at]tcd.ie

Photo credit

Thomas Guillerme, with the kind permision of Michael K. Brett-Surman.

 

World’s ending: enough time to read this?

Asteroid_explosion

What will happen today on the last day of the world (21st)? Will some giant asteroid hit the Earth? Will massive tsunamis ravage all the coast lines? Will climate suddenly be way to warm for life? Will methane bubble out of the oceans and asphyxiate everybody? Or are aliens going to take over our planet?

We could spend a long time discussing the causes (or not !) of the end of the world. However people usually ignore the timing of this type of inevitable (or not !!) catastrophe. We all have in mind the asteroid that Alvarez and his fellows discovered – the one that wiped out in a blink of an eye the ferocious Mr. T-Rex. But what people tend to ignore/forget is the timing of such events…

When studying the history of life, the timing and the scale of the timing is always very important! Did the asteroid wiped out the dinosaurs? If we could watch the impact of this asteroid, would we see a herd of Triceratops peacefully grazing on the ground and then, in a blink of an eye… Nothing ?! Same for the even more massive end-Permian event, would we have seen the trilobites bubbling in the sea and then the day after a desolated planet? No.

As this biological crisis appears really swift and savage in the fossil record, it does not mean that they were quick in reality. The fossil record is a random and imperfect record of time. What might look as quick as a blink of an eye could also be something as smooth and long as several million years !

As a French guy, I’m not putting the Catastrophism vs. Uniformitarianism debate back on the table. Obviously these crises were real, loads of species disappeared and in a small amount of time. But a small amount of time relative to  the fossil record, not according to the Mayan calendar !

So I’ll say no worries, if the Mayans were right we still will have time to enjoy Christmas turkey as well as the next couple of million years to go !

 

Author

Thomas Guillerme: thom.g[at]free.fr

Photo credit

wikimedia commons